Programming in Alice
Introduction

[image: image28.emf]
`Then you should say what you mean,' the March Hare went on. `I do,' Alice hastily replied; `at least--at

least I mean what I say--that's the same

thing, you know.'
 We all love to play computer games, and most of you have grown up using computers. Moving beyond Microsoft Office is the world where you get to create the programs you and other s can enjoy. Programming is simply writing a set of instructions that tell the computer what to do. There are lots of different ways to write programs. Each different type of program is written in a programming language. Just like English, French, and German are all verbal languages people use to communicate-there are lots of different programming languages are well Each instruction in a program is an action to be performed. “Writing a program to animate 3D objects in a virtual world is naturally all about objects and the actions objects can perform. From a practical viewpoint, writing a program is somewhat like working with word problems in math. In word problems, we first read the word problem (a description of the situation) and decide how to go about solving the problem (what steps need to be done). Then, we solve the problem (write a solution) and finally test our answer to make sure it is correct.”(Alice Programming Web Site www.alice.org)
We are going to use a program called Alice. The Alice language will allow you to create virtual worlds with characters and objects you can make move and interact with each other. In Alice you begin by selected really neat 3 D objects and placing them in a background world. Using instructions and code that it already written you can make the object so almost anything you can think of. For example a snowman could fall in love with a snowlady. By dragging and clicking blocks of code representing programming concepts you can enter directions/values/parameters to tweak the block’s behavior. When you are finished you will have created your own 3D movie. Alice is created by Carnegie Melon University and it a great programming language to ge staryed with.-The best part of Alice is that it is free and available at www.Alice.org
Getting to Know The Alice Interface
[image: image1.png]Shortcut to
SlowsndsteadyAlce.exe
Shartzut

Click on Alice Icon to Open the Program

[image: image2.png]ol
rars issionf
106

w]

Internet = gice StepbyS
Explorer - stepidac

)

Share-to-eb
UploadFolder

|4

1y Documerts

Comic Life.

Learn to Program with

Interactive 3D Graphics

a free gift to you from

Carnegie Mellon

[Alice Step by step.doc - Mirosoft word]

2.0 04/05/2005

Vgl @ eissem

Alice will Open slowly-Do Not Click as it Opens

When Alice Opens you will see the Tutorial Screen

[image: image3.png])

File Edit Tools Help

@ Py B E 0 .

Bwora

292 camera
Qi
® wrowna

(Tutorial | Recent Worlds | Ternplates | Examples | Open aworld

Start
the
Tutorial

v

(@ world.my first 1| comtinue atutorial:

world's details world.my first meth create new parameter

Propetties | methods [{nstions

Novariables -

create new variable

myfirst method | [edit

(Do Nothing
create new method Tutoriall Tutorial2 Tutorial3

cancel

7] Show this dialog at start

Doinorder | Dotogether| IfiElse Loop | While | For allinorder | For alltogether [Wait [print ||

<)l Tl @ sis7en

2 £y) = N5

Run the First Tutorial that will explain the different sections of the interface. You can follow the directions along with the tutorial step by step.

After you have finished the Tutorial Go into Alice pick one character object to experiment with:

a. How to add the object

b. Look at the object tree

c. Drag and drop methods to make your character move.

Over the next few days we will practice using the tutorial, experiment in the interface and watch a video Developed by Alice.org to explain the interface.

NOW YOU ARE READY TO BEGIN YOUR OWN PROGRAM

Every Program Starts with an Idea

1. First write a brief description or scenario of the story you are going to tell. This should be a 1-2 paragraph essay.
The scenario gives all necessary details for setting up the initial scene and then planning a sequence of instructions for the

animation.

Think about …

1. What story is to be told?____________________

2. What objects/avatars are needed?_____________

__

 Which objects will play leading roles in the

Story_________________________________ while other objects will be used to provide background scenery.

3. What actions are to take place? ___Remember the actions in the story will eventually

become the instructions in the program.

This is how detailed a scenario should be…

Scenario example

Setting:

You have recently been sitting at home, having missed another day of classes because a winter

snowstorm dropped 2 feet of snow on the ground. You see some children outdoors creating

snow people. You are daydreaming about a dance you recently attended. Being a very creative

person, your imagination gets carried away and the two scenes blend together: Several

snow people are outdoors, on a snow-covered landscape.
Action: A snow song is playing. A snowman is

trying to meet a snowwoman who is talking with a friend (another snowwoman.) The snowman

tries and tries to get her attention. He calls out "Ahem" and blinks his eyes at her. She turns to

look at the snowman and blushes. But, alas, she is not interested in meeting him. She gives him a

cold shoulder and turns back to talk with her friend. He gives up and turns away.

From this scenario, we have answers to questions:

What story is to be told? This scenario tells a sad story about a snowman’s unsuccessful

attempt to get the attention of a snowwoman in a winter scene.

What objects are to be used? The objects are snowpeople and the background scenery should

depict a winter scene.

What actions are to take place? The actions include the snowman trying to attract the

attention of the snowwoman, the snowwoman blushing but not being interested, and the

snowman turning away.

2. Next we Create a Storyboard we plan the story out step by step.

Design

A storyboard is the design approach we will use to create a solution to a problem, or plan a list of

actions to perform a task, as specified in the scenario. At Pixar, Disney, and other major animation studios, animators use Storyboard. This gives Life and direction to the planning process.
1. Break down a long scenario into sequences of many short scenarios.

2. For each scenario, a storyboard is created to depict the sequence of scenes. The storyboard may
consist of dozens of scene sketches, drawn by animation artists or generated by computer

animation special lists using computer software. Visual storyboards1

1.A visual storyboard breaks down a scenario into a sequence of major scenes – sort of a snapshot Each snapshot is associated with objects in certain positions, colors, sizes, and poses.

2.The snapshots are numbered in sequence and labeled with necessary information. For short

animations, the breakdown might be presented on one large sheet of paper. For more complex

designs, a separate sheet of drawing paper might used for each scene to allow the animation artist

to easily rearrange or discard scenes without starting over.

1 “Storyboard” is an animation term. In other areas of computer science, the term “state-transition-diagram” is used to

refer to what we will describe here as a storyboard.
Scene Number: _________________________

(sketch)
Description

__

Sound:________________________________
Text:____________________________________

The snowman blinks his eyes at the snowwoman of his dreams. Circles were used to create

the snowman and snowwoman. Diagonal lines were drawn to create a background of mountains

in the distance. The grey squiggly lines were put in to represent the surface of the snow-covered

ground. Using simple figures, hand-sketched storyboards are quick and easy to create.

[image: image4.emf]
Figure 2-1-3. Hand-sketched visual storyboard

For illustrations in this book, we borrow a technique from professional animators to create visual

storyboards. We use Alice’s scene editor to add objects to a world and then patiently arrange the

objects in various poses. As each successive scene is created, a screen capture is made and copied

to a document. The screen captures shown in Figure 2-1-4 illustrate screen captures in a

storyboard for the beginning of the snowpeople animation. Naturally, screen captures for a

storyboard are fancier than hand-drawn sketches. But, hand-sketched drawings are much faster

and easier to put together.

Textual storyboards

While professional animation artists use visual storyboards as part of their project development

process, not everyone has the patience to make dozens of sketches. A textual storyboard is a good

alternative to visual storyboards. A textual storyboard looks something like a "to-do list." While

sketches and screen captures in storyboards provide a visual representation of the sequence of

scenes, a textual storyboard allows us to prepare a planned structure for writing program code. To

take advantage of each of these strengths, both visual and textual storyboards are used throughout

this book.

25

Figure 2-1-4. Screen captures of storyboard scenes

Scene Number: 1

[image: image5.emf]
Description

The initial scene: the snowman is

interested in meeting the snowwoman

(wearing the read hat)

Sound: Snow song

Text: none

Scene Number: 2

[image: image6.emf]
Description:

The snowman tries to get the

snowwoman’s attention

Sound: Snow song

Text: Ahem….

Scene Number: 3

[image: image7.emf]
Description:

The snowman blinks his eyes.

The snow woman notices the snowman.

Sound: Snow song

Text: none

26

Textual storyboard example

A textual storyboard for the snowpeople animation is shown below. An important point that

should be mentioned about textual storyboards is that a textual storyboard may summarize several

scenes from a visual storyboard. For instance, the textual storyboard shown here summarizes

scene number 1, scene number 2, and scene number 3 from the visual storyboard in Figure 2-1-4.

(This storyboard represents only the first few actions. The storyboard will be completed in the

next section.)

The lines of text in a textual storyboard provide an ordered list of actions.
Do the following steps in order

snowman turns to face the snowwoman

snowman calls out to the snowwoman

Do the following steps together

snowman blinks his eyes at the snowwoman

snowwoman
 The lines are written in

an outline format and indentation makes the storyboard easy to read. Notice that two lines in the

textual storyboard are in italics. These lines organize the actions – some actions are to be done in

order (one at a time), others are to be done together (at the same time). The first two actions are

performed in order (the snowman turns to face the snowwoman and then says “Ahem”). The third

step is actually two actions performed simultaneously (the snowman blinks his eyes at the same

time as the snowwoman turns around to see who has called out).

In computing terminology, a textual storyboard is called an algorithm – a list of actions to

perform a task or solve a problem. The actions in a textual storyboard are very close to (but not

quite) actual program code and so are often known as pseudocode.

Evaluate and revise

Once a storyboard has been designed, it is a good idea to take an objective look at the design to

decide what might be changed. Evaluate the storyboard by answering these questions:

Does the action flow from scene to scene, as the story unfolds?

Do any transitions need to be added between scenes to blend one scene to the next?

Did you overlook some essential part of the story?

Is there something about the story that should be changed?

The important idea is that the storyboard is not final. We should be willing to review our plans

and modify them

Do the following steps in order

snowman turns to face the snowwoman

snowman calls out to the snowwoman

Do the following steps together

snowman blinks his eyes at the snowwoman

snowwoman turns to see who is calling her.

2-2 A First Program

In the previous section, you learned how to carefully read a scenario and design an animation to

carry out a task, play a game, or create a simulation. Now, you are ready to look at how an

animation program can be written. This step in building an animation is called implementation.

We recommend that you read this section while sitting at a computer: start up Alice and repeat

the steps shown in the example in this section.

What is a program?

As you know, a program is a list of instructions (actions) to accomplish a task. You can think of

an Alice program as being somewhat like a script for a theatrical play. A theatrical script tells a

story by describing the actions to be taken and the words to be delivered by actors on stage. In a

similar manner, an Alice program prescribes the actions to be taken and the sound and text to be

used by objects in a virtua l world.

Create an initial scene

[image: image8.emf]
An ancient Chinese proverb is "The longest journey begins with a single step." Let’s begin our

journey by implementing the snow people animation described in the section 2-1. Recall that a

snowman is interested in meeting a snowwoman. He tries to get her attention, but she isn’t

interested in meeting him, so she turns away. Then, he gives up. The first step of the solution is to

create the initial scene. For a new world, a snow scene template is selected and then a snowman

and two snowwomen (found in the People collection in the local gallery) are added. The initial

scene is shown in Figure 2-2-1.

Figure 2-2-1. Snowpeople initial scene

Program code editor

Once the initial scene has been set up, the instructions that make up the program code must be

written. Alice provides a program code editor -- the large yellow pane at the lower right of the

main Alice window, as shown in Figure 2-2-2. The instructions for a program are entered in the

editor. (From now on, we are just going to refer to the program code editor as “the editor”.)

28

Figure 2-2-2. Program code editor (the large yellow pane)

World.my first method

[image: image9.emf]
As seen in Figure 2-2-2, the tab for the editing area is labeled World.my first method. A method is

a segment of program code (a small set of instructions) that defines how to perform a specific

task. Alice automatically uses the name World.my first method for the first editing pane. Actually,

any name can be made-up and used for a method name. But, we will just use the name World.my

first method for this example. The snowpeople scenario is simple enough to be programmed in

just one method, World.my first method. When the Play button is pressed, Alice will execute

World.my first method by carrying out the instructions that we write there.

What instructions are needed?

Let’s take another look at the storyboard presented in the previous section, reproduced below.

Do the following steps in order

snowman turns to face the snowwoman

snowman calls out to the snowwoman

Do the following steps together

snowman blinks eyes at the snowwoman

snowwoman turns to see who is calling her.

etc.

29

Actually, this storyboard is incomplete. The scenario (in the previous section) described a

sequence of actions: (a) the snowman tries and tries to get the snowwoman’s attention by calling

out to her, (b) the snowman blinks his eyes at the snowwoman as she looks to see who is calling

her; (c) the snowwoman blushes but isn’t interested, so she turns away from the snowman, and

(d) the snowman gives up. Only actions (a) and (b) were outlined. Let's complete the textual

storyboard by adding the remaining actions, as shown below.

Figure 2-2-4. The snowpeople storyboard

[image: image10.emf]
Translating a storyboard to program code

To translate a storyboard to program code, begin with the first step of the storyboard and translate

it to an instruction. Then, translate the second step to an instruction, then the third, and so forth

and so on until the entire storyboard has been translated to instructions. The instructions used in

program code use the same built-in methods you learned in the Getting Started exercises in

Appendix A. To display the snowman's available methods, click the snowman object in the

Object tree and then the methods tab in the details area, as seen in Figure 2-2-3.

Do in order

snowman looks at the snowwoman

snowman calls out to the snowwoman

Do together

snowman blinks his eyes at the snowwoman

snowwoman turns to see who is calling her.

Do together

snowwoman blushes (her head turns red)

snowwoman turns back to her friends

snowwoman’s face turns back to white

snowman turns away (gives up)

30

Figure 2-2-3. Built-in methods for writing program code

In our example, we want to translate the storyboard to program code. We begin with the first step

in the storyboard, making the snowman turn to look at the snowwoman. One of the snowman's

methods is turn to face – we can use this method to make the snowman turn to look towards the

snowwoman. The next step is to have the snowman call out to the snowwoman. The snowman’s

say method can be used to make the snowman call out "Ahem" to the snowwoman.

Sequential versus simultaneous actions

From our storyboard, it is clear that the first two actions must occur in a specific sequence – the

snowman turns to look at the snowwoman and then the snowman calls out “Ahem” to the

snowwoman. We can tell Alice to Do these instructions in order. But, other actions occur

simultaneously (at the same time). For example , the snowman blinks his eyes at the snowwoman

at the same time as the snowwoman turns to face the snowman. To have these actions occur at the

same time, Alice must be told to Do these actions together. Do in order and Do together are part

of the Alice language. We call them control statements because we use these statements to tell

Alice how to carry out the instructions in a program.

Do in order

To tell Alice to do instructions in sequential order, a Do in order block is dragged into the editor,

as seen in Figure 2-2-4.

31

Figure 2-2-4. Dragging a Do in order tile into the editor

[image: image11.emf]
The first two instructions can now be placed within the Do in order block. The snowman is

selected in the Object tree. Then, in the snowman’s methods, the turn to face instruction is

selected and dragged into the Do in order, as shown in Figure 2-2-5. The turn to face instruction

requires an argument, namely which object the snowman should turn to face. (An argument is an

item of information that must be supplied so Alice can execute the action.) In this example, the

snowwoman is selected as the object that the snowman will turn to face.

32

Figure 2-2-5. Adding a turn to face instruction

[image: image12.emf]
The resulting instruction is shown in Figure 2-2-6.

Figure 2-2-6. The completed turn to face instruction

[image: image13.emf]
In the second instruction, the snowman will say “Ahem” to the snowwoman. A snowman say

method tile is dragged into the editor and "Ahem" is entered as the string of text to be displayed,

as illustrated in Figure 2-2-7.
[image: image14.emf]
 The resulting code is shown in Figure 2-2-8.
[image: image15.emf]
 When this program is

run (it is perfectly fine to try out the effect of just one or two Alice instructions by clicking on the

Play button), the snowman will turn to face the snowwoman and then he will say “Ahem.”

33

Figure 2-2-7. Adding a say instruction

Figure 2-2-8. Resulting program code

Do together

The third step in the storyboard requires two things to occur at once: the snowman blinking his

eyes at the snowwoman as the snowwoman turns her head to see who called out to her. A Do

together tile is dragged into the Do in order, as shown in Figure 2-2-9. Notice the horizontal

green line in Figure 2-2-9. The green line indicates where the Do together instruction will be

dropped.

34

Figure 2-2-9. Adding a Do together (inside the Do in order)

[image: image16.emf]
The result of this modification, illustrated in Figure 2-2-10, is that the Do together block is nested

within the Do in order block. Nesting means that one program statement is written inside another.

Note that nesting the Do together inside the Do in order just happens to be the best way to

animate this example. A Do together does not have to be inside a Do in order. These two coding

blocks can work together or can work separately in many different combinations.

Figure 2-2-10. Do together nested within a Do in order[image: image17.emf]
Now, instructions can be dragged into the Do together block to simultaneously turn the

snowwoman’s head and blink the snowman’s eyes. How can we have the snowwoman turn her

head to face the snowman? Clicking on the + to the left of the snowwoman in the object tree

causes the snowwoman’s parts to be displayed in the object tree. Then clicking on the

snowwoman’s head in the object tree allows access to instructions for moving her head, as

illustrated in Figure 2-2-11.

35

Figure 2-2-11. Accessing the methods for the snowwoman’s head

[image: image18.emf]
A turn to face instruction for the snowwoman’s head is added to the Do together block, as seen in

Figure 2-2-12.

Figure 2-2-12. Code to turn the snowwoman's head

[image: image19.emf]
Creating instructions to make the snowman’s eyes blink is more complicated. A click on the + to

the left of the snowman in the Object tree allows access to the subparts of the snowman. Then, a

click on the + to the left of the snowman’s head allows access to the snowman’s eyes, as shown

in Figure 2-2-13.

Figure 2-2-13. Accessing the snowman’s eyes

36[image: image20.emf]
It is now possible to drag instructions into the editor to move the snowman’s eyes up and then

down, as shown in Figure 2-2-14.
 Note that popup menus allow you to select arguments for the

direction and the amount of movement. When other is selected as the amount, a number pad

(looks like a calculator) pops up on the screen. We chose 0.04 meters, clicking the buttons on the

number pad to make our selection. How did we know to use 0.04 meters as the distance? Well,

we didn’t. We just tried several different distance values until we finally found one that worked to

give the best effect. This is an example of a trial and error strategy. While we always recommend

good planning strategies, sometimes trial and error is useful.

Figure 2-2-14. Dragging the leftEye move tile into the editor

[image: image21.emf]
Instructions are added to the editor for moving the leftEye up, leftEye down, rightEye up, and

rightEye down , as seen in Figure 2-2-15.

37

Figure 2-2-15. Program code has been added to make the snowman blink his eyes

[image: image22.emf]
Bugs

You will recall that the four steps in creating an animation program are: read, design, implement,

and test. Now that several lines of code have been written (implemented), it is a good idea to test

it to see if what you have written thus far works the way you thought it would. You do not have to

wait until the entire program is completed. To test the instructions written thus far, the Play

button is clicked. The snowman turns to face the snowwoman, the snowman says “Ahem,” the

snowwoman turns her head to face the snowman, but the snowman’s eyes don’t move up and

down. In fact, they do not appear to move at all!

The reason the eyes do not move is the program has a bug. (Errors in computer programs are

generally referred to as bugs. When we remove bugs from a program, we debug the program.)

The problem is, in the code shown above, the snowman eye movement instructions are written

inside a Do together. Of course, if the eyes are moving both up and down at the same time, they

effectively cancel each other out, and the snowman’s eyes do not move at all! To fix this

problem, it is necessary to place the snowman’s left eye movement instructions within a Do in

order block and also the snowman’s right eye movement instructions within a Do in order block,

as illustrated in Figure 2-2-16.

38

Figure 2-2-16. Revised instructions for blinking the snowman's eyes

[image: image23.emf]
Now, the snowman’s eyes move up and down! There is one other useful observation to make.

Animation instructions, by default, require one second to run. Normally, within a Do together

block, each of the instructions should take the same amount of time. Since it takes one second for

the snowwoman to turn her head, moving the snowman’s eyes up and down should also take one

second. However, there are two steps in moving his eyes (up and then down). Each step in

moving his eyes should require ½ a second. To change the duration of an instruction, click on

more…(at the far right of the instruction where the duration is to be changed), select the duration

menu item, and select 0.5 seconds, as shown in Figure 2-2-17.

Figure 2-2-17. Changing the duration of an instruction

[image: image24.emf]
Using a property

We still need to complete the final two steps described in the storyboard. The fourth step requires

the snowwoman to blush (her head turns red) as she turns her head back to her snow friends.

Making the snowwoman’s head change color is slightly different from other instructions we have

used so far. To change the color of the snowwoman’s head, we use the color property of the

snowwoman's head. To view the list of properties of the snowwoman, select the snowwoman in

the Object tree and select the properties tab in the details area (lower left of the Alice window), as

shown in Figure 2-2-18.

Figure 2-2-18. The properties of the snowwoman

[image: image25.emf]
What we want to do is change the color of the snowwoman's head when she turns to look at the

snowman while the animation is running. (The technical term for “while the animation is

running” is “at runtime.”) Figure 2-2-19 demonstrates the steps. First, a Do together block is

dragged into the editor (beneath all the instructions written thus far). Then, in the Object tree, the

+ beside the snowwoman is clicked to expand the tree, showing the subparts of the snowwoman.

The subpart named head is selected. Then, the color tile in the properties list for the

snowwoman's head is dragged into the Do together block. Finally, the color Red is selected from

the popup menu of available colors.

40

Figure 2-2-19. Changing the color of the snowwoman's head

[image: image26.emf]
As the snowwoman blushes, she should turn her head to look again at her friend. So, a turn to

face instruction is added to the Do together block to make the snowwoman's head return to look

back at snowwoman2. Finally, the last instructions are written to return snowwoman’s head to a

white color and then the snowman gives up (hangs his head in disappointment and turns away).

The resulting code for the entire animation is listed in Figure 2-2-20.

41

Figure 2-2-20. The program code for the entire snowpeople animation

[image: image27.emf]
Comments

Now that we have written our first program, it is time to look at a useful component in programs

– comments. Comments are NOT instructions that cause some action to take place. This means

that Alice can ignore comments when running a program. However, comments are considered

good programming “style” and are extremely useful for humans who are reading a program.

Comments help the human reader understand what a program does. This is particularly helpful

when someone else wants to read your program code to see what you wrote and how you wrote it.

Comments in Alice are created by dragging the green // tile into a program and then writing a

description of what a sequence of code is intended to do. Figure 2-2-22 illustrates World.my first

method with a comment added. Where it is not obvious, a comment should be included at the

beginning of a method to explain what the method does. This kind of comment is like writing a

topic sentence in a paragraph – it summarizes what is going on. Also, small sections of several

lines of code that collectively perform some action can be documented using a comment. An

additional comment has been added in Figure 2-2-23. This comment explains that this small

section of the code is to have the snowwoman blush and turn away.

42

Figure 2-2-22. An overview comment for World.my first method

Figure 2-2-23. A comment for a small section of code
Sources:
Laugesen, Richard (richard@rl.sg) Stage 5 Information Technology Introduction to Computer Programming Complete 3 , Australian High School (April 2007)
Pausch, Randy “Learning to Program with Alice” Pearson Pentice Hall N.J. 2007

